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Abstract—Loss-based congestion control protocols, such as TCP
CUBIC, can unnecessarily fill router buffers, adding delays that
degrade application performance, particularly streaming video.
Newcomer TCP BBR uses estimates of the bottleneck bandwidth
and round-trip time (RTT) to try to operate at the theoretical
optimum – just enough data to fully utilize the network without
excess queuing. We present detailed experimental results that
show in practice, BBR can misestimate the bottleneck bandwidth
and RTT, causing high packet loss for shallow buffer routers and
massive throughput variations when competing with TCP CUBIC
flows. We suggest methods for improving BBR’s estimation
mechanisms to provide more stability and fairness.
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I. INTRODUCTION

TCP is the most commonly used Internet protocol and, for
video, will account for 80% of all global traffic in 2019 [1].
Despite its prevalence, TCP is not optimized for video – video
streaming has real-time constraints such that the next packet is
often more important than a lost or in-flight packet. In contrast,
TCP blocks sender window progression until each packet is
delivered in order, possibly incurring playout delay at the
client [2]. This is especially true when TCP is configured to use
a loss-based congestion control protocol, such as CUBIC [3].
With TCP CUBIC, networks that would have round-trip times
(RTTs) of milliseconds when uncongested bloat buffers and
can instead have RTTs of seconds. This increased RTT can
reduce video streaming Quality of Service (QoS) because it
can increase the time to detect and retransmit lost packets or
to switch video to lower encoding rates [4].

TCP BBR, a new congestion control protocol developed
by Google [5], aims to combat bufferbloat by estimating
the minimum round-trip propagation time (RTprop) and the
maximum bandwidth at the bottleneck (BtlBw) for a given
connection to compute the bandwidth delay product (BDP).
BBR then caps its inflight packets to a small multiple of
the BDP and paces its sending rate to match the estimated
bottleneck bandwidth. In theory, having a single BDP of
packets inflight is optimal for a network flow as it minimizes
delay while maximizing a connection’s throughput [6], and
BBR’s inflight cap is set to operate close to this optimal value.

In practice, BBR has been successfully deployed in
Google’s YouTube edge servers, increasing QoS [5]. Spotify
AB, an audio streaming platform, has found that BBR helps
reduce streaming stutters [7] and Dropbox, a file hosting

service, has run preliminary BBR experiments that show an
increase in file download speeds [8].

Despite promising performance, BBR may not operate well
on pathways with shallow router buffers and when in direct
competition with loss-based congestion controlled flows, such
as TCP CUBIC [5], [9], [10]. In shallow buffers, BBR creates
high loss due to its too-high congestion window (CWND) cap
and persistence despite lost packets. This is especially prob-
lematic when it shares a bottleneck with loss-based congestion
control protocols. Even when router queues are not shallow,
BBR can induce significant throughput variation when sharing
a bottleneck with CUBIC.

This study seeks to answer the following questions:

A) Can an inexpensive hardware testbed be effective for
evaluating state of the art congestion control protocols?

B) Does BBR exhibit high loss rates when run over shallow
router buffers?

C) Is BBR unfair when run with competing CUBIC flows?

We set up a hardware testbed for controlled experiments
using the latest network OS code and create custom tools to
conduct a wide variety of network performance tests. These
tests vary: link capacities, network latencies, router queue
lengths, TCP congestion control algorithms, and number of
flows competing at a bottleneck.

Analysis of the results verifies prior work regarding BBR’s
performance in shallow buffers and in competition with CU-
BIC. It is crucial for experimental results to be reproduced by
others within the scientific community in order to generalize
the knowledge beyond the experience of the individual scien-
tist. Our work goes further than previous research since our
wide variety of tests allows us to more precisely define and
identify BBR’s behaviors over a range of network conditions.
Specifically, we find that BBR’s high throughput variation and
high loss in shallow buffers are due to a static CWND cap and
erroneous minimum round-trip propagation time estimations.

The contributions of this work include:
• Configuration, software framework and validation of an
inexpensive testbed for conducting congestion control research
using the latest Linux kernel code.
• Confirmation of base BBR performance under known,
controlled conditions, validating Cardwell et al. [5].
• Extension to understanding BBR’s behavior in shallow
buffers, validating Hock et al. [11], with new observations on



loss rate versus buffer size over a range of link conditions.
• Extension to understanding of BBR’s cyclic behavior with
deeper buffers and competing with CUBIC flows, validating
Scholz et al. [9] and Miyazawa et al. [10], contributing
new details on the BBR protocol features that cause this
cyclic behavior, and quantification of fluctuation and unfairness
versus buffer size.
• Suggestions for improving BBR by adjusting BBR’s RTT
estimation and adding a feedback loop to dynamically adjust
BBR’s CWND.

The rest of this paper is organized as follows: Section II
discusses prior work in TCP congestion control and BBR;
Section III describes our experimental setup to evaluate BBR
in a hardware testbed; Section IV analyzes the experiment re-
sults; and Section V summarizes our conclusions and presents
possible future work.

II. RELATED WORK

This section defines the optimal network operating point
(Section II-A), and describes recent TCP congestion control
protocols (Section II-B), including BBR (Section II-C).

A. The Optimal Operating Point
Regardless of the number of hops, TCP views the network

path as a single link characterized by its bottleneck bandwidth
(BtlBw) and the minimum RTT (RTprop) it takes a packet
to propagate through the network in the absence of queuing
delay. The theoretical optimal operating point for a network
flow using TCP is when exactly one bandwidth × delay (the
bandwidth-delay product, or BDP) of packets is in flight at all
times, and the arrival rate of packets at the bottleneck router is
close to the service rate (the limiting factor of the bandwidth)
of that router [6], [12]. If these conditions are met, then the
bottleneck router link is fully utilized with no extra queuing
delay. This operating point has been coined Kleinrock’s oper-
ating point after researcher Leonard Kleinrock.

This relationship can be seen in Figure 1, with the packets
inflight depicted on the x-axes and the RTT (including queu-
ing) on the y-axis of the top graph and the delivery rate on
the y-axis of the bottom graph. The minimum RTT is labeled
RTprop, achieved when the inflight is less than or equal to the
BDP. When there is less than a BDP of packets in the network,
the bottleneck link is underutilized, seen with a delivery rate
less than the link capacity (labeled BtlBw). If there is more
than one BDP of packets in the network, the delivery rate stays
maxed out at the bottleneck link capacity, but the packets incur
queuing delay and the RTT increases beyond the minimum.
Thus, the optimal operating point achieves the maximum
throughput and the minimum latency. Note that loss-based
congestion control protocols, such as TCP CUBIC, operate at
the right side of this graph, increasing the amount of inflight
packets until the bottleneck router queue saturates and packets
are dropped.

B. Recent Congestion Control Protocols
Unfortunately, Kleinrock’s operating point has been proven

to be practically impossible to converge to for a distributed
algorithm [13]. Thus every congestion control protocol seeks
a “good” operating point, often favoring throughput over delay.
The different congestion control approaches include: loss-
based protocols (Section II-B1) that maximize throughput,

Figure 1. Optimal operating point [9].

utility-based protocols (Section II-B2) that adjust their oper-
ating points based on measures of utility, and measurement-
based protocols (Section II-B3) that explicitly set parameters
in an attempt to match the theoretical optimal operating point.

1) Loss-based congestion control: Loss-based congestion
control protocols treat lost packets as congestion signals,
increasing the number of inflight packets until packet loss
occurs (indicating the network is saturated) whereupon they
decrease their inflight packets, and repeat the cycle. This
behavior means loss-based protocols generally operate to the
right of Kleinrock’s operating point as depicted in Figure 1,
resulting in high throughput, but also high latency.

TCP CUBIC [3], the de facto standard loss-based conges-
tion control protocol, aims to maximize network utilization by
controlling the congestion window (CWND) with a cubic func-
tion. The cubic function’s convex nature allows the CWND
to quickly grow to utilize available capacity. In the case of
a congestion event (such as packet loss), the cubic function
adjusts such that the CWND increases in a concave manner as
it approaches the previous maximum, avoiding overshooting
the maximum network capacity and excessive packet loss. In
the absence of loss, the cubic function returns to the convex
profile to rapidly fill available network capacity. Together,
these two profiles seek high utilization and low loss.

2) Utility-based congestion control: Utility-based conges-
tion control protocols evaluate their performance based on a
utility function, and adjust parameters to maximize utility over
time. Unlike loss-based congestion control protocols (such as
TCP CUBIC), utility-based congestion control protocols do
not have explicit responses for different congestion events,
but rather have just a general set of actions to take to
maximize their utilities. In general, using a utility function can
simplify protocol design since not every condition needs to be
explicitly handled, but rather only needs algorithm parameter
adjustments to improve utility.

The utility-based Performance-oriented Congestion Control
(PCC) [14] works under the assumption that networks are
too complicated to deterministically predict the effects of a
given action. The PCC premise is that it is infeasible for
a protocol to tune performance with a predefined action for
every congestion event, as does CUBIC. Thus, PCC treats the
underlying network as a “black box” and empirically observes
which actions provide better utility by continuously conducting
mini experiments. In a mini experiment, PCC reduces or
increases the sending rate and CWND and observes the utility
for this action. The observation informs its next action through
a gradient-ascent algorithm to adjust sending rates towards
the optimal. This decoupling of congestion events and actions



Figure 2. BBR state transition diagram.

allows PCC to perform well even in networks with high
random loss, such as in some wireless networks.

Copa [15], another utility-based congestion control proto-
col, uses a simple set of rules to update the sending rate and
CWND towards an optimal utility value, creating little to no
queuing at the bottleneck router if all flows are using a similar
CWND updating method. Copa measures the queuing delay as
the difference between the observed and minimum RTTs, and
increases its sending rate until small queues are created at the
bottleneck. Copa implements a “competitive mode” if it detects
a competing buffer-filling flow. This addresses the problem
with delay-based utility functions, such as in TCP Vegas [16],
where full buffers cause a reduction in inflight packets to
reduce congestion, leading to unfairness when competing with
buffer-filling protocols.

3) Measurement-based Congestion Control: Loss-based
congestion control protocols are reactive, waiting until loss is
observed before taking an action to reduce congestion, and
utility-based congestion control protocols treat the network
as a black box, just taking actions to based on some utility
function. Conversely, measurement-based protocols attempt to
estimate the current network operating point and explicitly
adjust protocol parameters to try to meet the optimal. Examples
include TCP Vegas, discussed in this section, and TCP BBR,
discussed in Section II-C.

TCP Vegas [16] measures the observed throughput and
RTT to estimate how much bloat (excess queued packets) it
has created in the network. Vegas sets the expected throughput
to CWND/RTprop and compares this value to the actual
observed throughput. If the actual throughput is lower than the
expected throughput by some threshold α, Vegas assumes it
has too small a congestion window, and increases the CWND
linearly for one RTT. Similarly, if the actual throughput is
greater than the expected throughput by some threshold β,
Vegas assumes the CWND is too large and decreases the
CWND accordingly.

In theory, this scheme should let Vegas operate near
Kleinrock’s operating point, but in practice Vegas tends to be
too conservative and cedes capacity to loss-based congestion
control protocols such as CUBIC because Vegas decreases its
CWND to minimize buffer bloat while loss-based protocols
increase CWNDs until loss occurs.

C. Bottleneck Bandwidth and Round-trip Propagation Time
Bottleneck Bandwidth and Round-trip Propagation Time

(BBR) [5] is a congestion control protocol designed to re-
place loss-based algorithms. BBR [5] aims to operate near
Kleinrock’s operating point (see Section II-A) by estimating
the BtlBw and RTprop parameters and setting the sending
rate and inflight packets accordingly. BBR operates using a
series of states shown in Figure 2. After slow start, BBR
looks for increases to the bandwidth during PROBE BW every
8 RTTs, increasing the CWND and setting a rate multiplier

to send at a rate greater than the current BtlBw. The new
estimated BtlBw is set to the maximum delivery rate observed
during this probe. The RTprop estimation expires after 10
seconds, causing BBR to enter PROBE RTT to re-estimate
the minimum RTT. In Probe RTT, BBR briefly reduces its
inflight packets, draining any queue that it had built up. The
new RTprop estimate is set to the minimum RTT observed.
BBR always paces its sending rate at the estimated BtlBw
and caps its inflight CWND to two times the estimated BDP.
The CWND inflight cap is set to two BDP rather than the
theoretically optimal one BDP to accommodate delayed and
stretched ACKs in wireless networks. However, as we show
in Section IV, the larger CWND can cause high packet loss,
instability, and unfairness.

Because BBR relies on an estimated RTprop and BtlBw,
BBR has inconsistent behavior when it misestimates one
or both of these values. Hock et al. [11] find that when
multiple BBR flows share a bottleneck, BBR pathologically
over-estimates its fair-share of the bandwidth since each flow
measures the maximum available bandwidth over a time pe-
riod. The sum of throughput’s derived from these estimates
is then always greater than the bottleneck’s actual maximum
bandwidth, causing persistent queues to build at the bottleneck
router until the inflight cap of 2 BDP is reached [11]. This
persistent queue is especially problematic when the bottleneck
router queue is smaller than a single BDP, whereupon BBR
attempts to build a queue of 1 BDP and ignores the massive
packet loss caused by overwhelming the bottleneck queue.

Scholz et al. [9] and Miyazawa et al. [10] show that BBR
also produces inaccurate RTprop estimates when it shares the
bottleneck with buffer filling protocols, such as TCP CUBIC.
When BBR over-estimates the RTprop, it drastically changes
its CWND and thus creates large amounts of loss. This loss
and mis-measurement leads to a cyclic behavior where BBR
and CUBIC each have constantly fluctuating throughput.

We confirm these prior BBR results but in a broader
range of network scenarios and provide additional explanations
in Section IV. We incorporate these new insights into our
suggestions to improve BBR’s performance in Section IV-E.

III. EXPERIMENTS

We set up a hardware testbed and develop a set of cus-
tom tools that enable a variety of network experiments for
evaluating TCP CUBIC and TCP BBR in a controlled environ-
ment. Because our testbed relies on off-the-shelf hardware and
software, it provides an attractive environment for congestion
control research that can be recreated at relatively low cost.

Our testbed, named “Panaderia”,1 consists of 8 Raspberry
Pi computers, two network switches, and one Linux PC func-
tioning as a router (“Horno”2.). The use of hardware (versus
simulation) allows us to run the mainline Linux kernel versions
of BBR and CUBIC, thus ensuring adherence to implemented
protocol behavior. Further, the low cost allows us to afford
separate hosts for each flow, thus removing any confounding
factors from multiple flows originating from a single machine.

The hardware is configured in a traditional dumbbell topol-
ogy shown in Figure 3 – the Raspberry Pis are split into two
subnets of four machines (“churros” and “tartas” clusters).

1Panaderia means “bakery” or “bread shop” in Spanish.
2Horno means “oven” in Spanish



Figure 3. Hardware testbed topology.

TABLE I. EXPERIMENT PARAMETERS.

Parameters Values
Number of Flows 2, 4, 8
Network Capacity 40, 80, 120 Mb/s
Congestion Control Protocol CUBIC, BBR
Router Queue Size 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75,

2.00, 4.00, 8.00 BDP

Each Raspberry Pi is a model 3B+ running the Linux kernel
v4.17. Pilot tests (not shown) reveal an individual Raspberry
Pi has a maximum sending rate of about 225 Mb/s, limited by
the USB 2.0 bus speed. Below this throughput, we verified that
the network behavior of the Raspberry Pi performs similarly
to the network behavior of a Linux PC. We developed a series
of Python scripts to allow us to nimbly run experiments, vital
for comparing BBR’s behavior over a wide range of network
conditions. Details on the setup specifics, as well as access to
our configuration scripts, are available via our git repository.3

The router is a Linux PC, configured with an Intel i7
CPU, 12 GB of RAM, and Broadcom BCM5722 Gigabit
Ethernet PCI cards. The router uses NetEm [17] to add a
fixed propagation delay of 24 ms giving a total round-trip
propagation time of 25 ms to align with previous research [5].
The router also uses tc-tbf token bucket filters to control
the bottleneck bandwidth [18]. Since accumulated tokens can
cause bursts of traffic interfering with BBR’s BtlBw estimate,
the router is configured with two token bucket filters with
small buckets to limit instantaneous bursts [19]. Receiving
and sending devices each collect pcap network traces, which
are subsequently analyzed for RTT, throughput, and inflight
packets. Additionally, the router records the number of bytes
queued and number of packets dropped.

Our experiments vary flows, protocols, network capacities
and router queue sizes, as shown in Table I.

Validation: When creating a novel testing environment, it
is important to validate testbed behavior against known results.
Similarly, for science, it is vital to confirm that prior work is
reproducible to ensure a knowledge foundation before making
improvements. We validate the Raspberry Pi’s TCP networking
by, among other methods, confirming that BBR follows the
behavior seen by Cardwell et. al [5]. Specifically, we ensure
that when multiple BBR flows share a single bottleneck, each
flow converges to a fair share of the maximum bandwidth, and
that the flows synchronizes during their PROBE RTT phases.

Figure 4a depicts the throughputs of 5 simultaneous BBR
flows with staggered start times competing for a 100 Mb/s

3https://saahilclaypool.github.io/panaderia/

bottleneck with a RTprop of 10 ms, as evaluated by Cardwell et
al. [5]. Each of the flows obtains a fair share of the bottleneck
capacity, 20 Mb/s, and after about 30 seconds, each flow enters
PROBE RTT at the same time, seen by the throughput dips at
about times 30 and 40 seconds. Figure 4b depicts our Panaderia
testbed’s behavior in similar conditions with 4 simultaneous
BBR flows with staggered start times competing for a 80 MB/s
link. Similar to Cardwell et al., our BBR flows synchronize
at a fair share of 20 Mb/s within about time 30 seconds,
repeatedly doing so every 10 seconds. Further validation tests
are not shown due to lack of space, but can be found in the
full report [20]. In total, this both confirms Cardwell et al.’s
measured BBR behavior (a first-class scientific contribution)
as well as supports the validity of the Panaderia as a network
testbed for evaluation of TCP congestion control protocols.

1

(a) Synchronization of BBR from Figure 8 of [5].
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(b) Synchronization of BBR in the Panaderia.

Figure 4. Comparison of Cardwell et al. [5] to our Panaderia testbed.

IV. RESULTS

This section: validates BBR’s behavior (Section IV-A);
extends previous work in shallow buffers (Section IV-B) and
router queue sizes (Section IV-C); evaluates BBR’s interplay
with CUBIC (Section IV-D); and proposes mechanisms to
improve BBR’s performance (Section IV-E).

A. Standard BBR Behavior
Prior work has shown that when there is more than one

flow competing for the same bottleneck, BBR tends to create
a 1 to 1.5 BDP standing queue [11]. We verify this by running
2, 4, and 8 BBR flows for 5 minutes at 40, 80, and 120 Mb/s
with a 25 ms RTprop and a large bottleneck queue.

Figure 5 depicts 4 BBR flows competing for an 80 Mb/s
link with the maximum router queue size set to 2 MBytes
(8BDP ). Only the steady-state behavior is analyzed (1 minute
of a 5 minute trial). For reference, we independently ran and
show on the same graph a TCP CUBIC flow to compare
behaviors. CUBIC, as a loss-based protocol, continues to fill
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Figure 5. BBR and CUBIC in a large router queue.
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Figure 6. BBR’s loss rate in a small router queue.

the queue until the 8 BDP maximum is reached. In contrast,
BBR creates a persistent queue of about 1.1 BDP, increasing
to roughly 1.5 BDP during bandwidth probing.

Over the full range of flows, capacities, and queue sizes
listed in Table I, analysis confirms that BBR creates a standing
queue of 1 to 1.5 BDP, similar to what is shown in Figure 5.
Results are not shown due to lack of space, but can be found
in the full report [20]. Note that while BBR’s RTT is low
(roughly 0.25 CUBIC’s), it is around double the RTprop since
the 1 BDP of packets queued at the router takes a full RTT to
process (BDP = BtlBw ×RTprop).

B. BBR in Shallow Buffers
Since multiple BBR flows competing at a bottleneck create

about a BDP queue at the bottleneck router, when routers
have shallow buffers (i.e., a small router queue) BBR has the
potential to saturate the queue and create loss.

We evaluate a shallow buffer scenario with a bottleneck
bandwidth of 80 Mb/s and a RTprop of 25 ms, but with a
bottleneck router queue of just 0.5 BDP. Figure 6 depicts the
loss rate at the router averaged over 500 ms intervals. All
further loss rate graphs are calculated in the same manner.
From the graph, loss varies considerably over time, but persists
and averages over 10 percent.

C. BBR over Different Router Queue Sizes
We evaluate BBR’s loss rate over a range of router queue

sizes. Specifically, we run 3 identical trials at 40, 80, and 120
Mb/s, all at 25 ms RTprop for 5 minutes for each given queue
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Figure 7. BBR’s loss versus router queue size.

size: 0.25, 0.50, 0.75, 1.25, 1.50, 2.00, 4.00, and 8.00 BDP. The
recorded packet captures at each host and the queue statistics
at the bottleneck router determine the aggregate behavior of
BBR given the bottleneck queue size.

Figure 7 depicts the results. The x-axis is the maximum
router queue length in terms of the BDP and the y-axis is the
loss rate during steady state (minutes 2 to 4 of a 5 minute
connection) averaged over the 3 trials.

Since BBR causes an extra 1.5 BDP of packets to be
enqueued at the bottleneck router, the loss rate is extremely
high when the buffer size is less than a BDP and is high unless
the router buffer size is at least 1.5 BDP. This result confirms
the findings of Hock et al. that in practice BBR’s inflight is
2.5 BDP [11], while providing specific analysis of the actual
loss rates realized versus queue size.

Since BBR does not respond to loss as a congestion signal,
the queue always grows to 1.5 BDP, even though BBR’s
throughput remains relatively high despite the loss (not shown
due to lack of space, but shown in the full report [20]). From
here on, we refer to buffers less than 1.5 BDP as shallow,
buffers greater than 4 BDP as large and buffers in-between as
medium. Note analysis of router queue size is relative to the
BDP – with high throughput, high RTT, a shallow buffer of 1
BDP could have a lot of bytes.

D. BBR’s Interplay with CUBIC
Another concern with BBR is when it competes with

CUBIC and other loss-based congestion control. BBR’s mech-
anism for controlling the bottleneck bandwidth is at odds
with CUBIC’s – CUBIC adjusts its CWND to minimize loss,
while BBR mostly ignores loss as a congestion signal. This
difference presents itself uniquely in each of the conditions
discussed above – shallow, medium and large buffers.

1) BBR and CUBIC in Shallow Buffers: By itself in
shallow buffers, BBR creates high amounts of ambient loss
by growing its CWND beyond what the network can handle
(see Figure 6). Because CUBIC treats such loss as congestion
in the same scenario, CUBIC shrinks its CWND in response.
Figure 8 depicts the relative throughputs of BBR and CUBIC
competing over a shallow (0.5 BDP) buffer in an 80 Mb/s
and 25 ms bottleneck. The loss rates are similar to Figure 6,
averaging about 10 percent. As seen in Figure 12, the relative
throughput for CUBIC is much lower than BBR because, again,
CUBIC responds to the loss whereas BBR does not. Similar
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Figure 8. Throughput utilization.

trials with 40, 80 and 120 Mb/s and 2, 4 and 8 flows show
similar results.4

2) BBR and CUBIC in Medium to Large Buffers: In
medium buffers, where BBR is not persistently inducing loss,
BBR and CUBIC display a cyclic behavior. We evaluate this by
running 2 BBR and 2 CUBIC flows through a 80 Mb/s capac-
ity, 25 ms RTprop bottleneck and a router queue of 1.75 BDP.
Figure 9 shows the results, annotated to match the explanations
that follow. BBR and CUBIC exhibit cyclic performance –
they alternate which flows dominate the connection over a
regular 20 second period, confirming prior results by Scholz
et al. [9] and Miyazawa et al. [10]. We build upon this work
by explaining the factors that cause the cycles in detail.

CUBIC Dominates. When BBR has an accurate estimate
for the BtlBw and RTprop, it caps its inflight at 2 B̂DP . This
means that BBR allows just 1 BDP of packets to enqueue
at the bottleneck router for 8 RTTs. During this time, CUBIC
expands its CWND by an additional 0.75 BDP to fill the router
queue before encountering loss.

Since a flow’s throughput is proportional to the queue
share at the bottleneck router, as CUBIC gets more packets
enqueued, BBR observes a lower throughput and thus further
decreases its CWND, which is derived from the observed
throughput. This creates a positive feedback loop allowing CU-
BIC to continue to increase its CWND in response to BBR’s
decrease of its CWND as it observes a reduced throughput.
This behavior can be seen from time 0 to 10 sec. in Figure 9.

BBR takes over. Every 10 seconds without observing
a new minimum RTT ( ̂RTprop), BBR probes for RTprop
by reducing its inflight packets to just 4 packets to drain
the router queue [5] (e.g., time 28 seconds of Figure 9a).
BBR uses the minimum observed RTT as the new ̂RTprop.
However, the queue length, shown in Figure 9b, does not
change significantly because most of the packets in the queue
are from the CUBIC flows. In other words, even when BBR
decreases its inflight packets, the queue stays relatively filled.
Figure 9d depicts the RTT over this period, where around time
28 seconds, the RTT is still much higher than the true RTprop
– around 60 ms rather than 25 ms. This causes the ̂RTprop to
be too large, and, because BBR’s B̂DP , and thus CWND, is
derived from this RTprop, BBR greatly increases its CWND.

4Results omitted due to lack of space, but can be found in the full
report [20].
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Figure 9. BBR and CUBIC show cyclic performance in medium buffers.



0 1 2 3 4 5 6 7 8
Router Queue Length (Multiples of BDP)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (p

er
ce

nt
 o

f B
an

dw
id

th
) BBR

CUBIC

Figure 10. BBR and CUBIC’s interplay versus router queue length.

Because the router queue is already filled by CUBIC,
BBR’s increased CWND causes a large amount of packet loss
for both CUBIC and BBR. BBR mostly ignores the loss, but
CUBIC backs off, decreasing its inflight packets. This loss can
be seen at around time 10, 30, and 50 seconds of Figure 9c,
each of which corresponds to just after BBR increases its
CWND after an inaccurate RTprop probe.

This continues for 10 seconds, whereupon BBR again
probes for RTprop. This time, the probe obtains an accuratêRTprop of 25 ms, as seen at time 38 seconds of Figure 9b,
because the queue is fully drained, and thus BBR reduces its
CWND accordingly. This allows CUBIC to grow its CWND,
as discussed above, and the cycle repeats.

We analyzed this behavior over the full range of test
parameters in Table I, visualizing this interplay for 80 Mb/s,
25 ms, 2 BBR & 2 CUBIC flows with queue sizes: 0.25, 0.50,
0.75, 1.00, 1.75, 2.00, 4.00, and 8.00 BDP in Figure 10. The
x-axis depicts the queue size for each trial, and the y-axis
the throughput utilized by the flows grouped by congestion
control protocol. The thick lines depict the mean throughput
of BBR (red) and CUBIC (blue), with the thinner colored
lines showing the 25th and 75th percentiles, averaged over
half second intervals. From the figure, the behavior differs
drastically for router queue sizes below 1.5 BDP where BBR
creates persistent loss. Above 1.5 BDP, throughput spread
greatly increases from the cyclic performance described earlier.

As the bottleneck queue gets larger, BBR becomes more
limited by its 2 BDP CWND cap. This causes CUBIC to
progressively obtain more of the throughput as its CWND
grows beyond BBR’s CWND limits.

E. Improving BBR’s Performance

We have identified two weaknesses in BBR that affect
performance: BBR’s static 2 BDP CWND, and BBR’s inac-
curate RTprop estimation. This section suggests fixes to these
issues, with a limited proof of concept evaluation. Note that
the evaluation is meant as an inspiration, not as a vigorous
implementation.

1) CWND: Currently, BBR caps the inflight packets at 2
BDP, causing there to be 1 to 1.5 BDP of packets queued at the
bottleneck router and a high amount of loss in shallow buffers.
These results indicate that this 2 BDP CWND cap is sometimes
too large to suit the network conditions. However, when the
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Figure 11. Modified BBR Shallow’s loss versus router queue length.
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Figure 12. BBR Shallow and CUBIC’s interplay versus router queue length.

bottleneck router queue is large and BBR competes with a loss-
based congestion control protocol, BBR’s CWND cap limits its
queue share, and, hence, it’s share of the bottleneck bandwidth.
These results indicate the CWND cap is sometimes too small to
suit the network conditions. We suggest a feedback loop where
BBR dynamically adjusts its CWND cap based on the loss,
throughput and RTT measurements. This idea is similar to the
approach of Copa [15] which generally keeps a small CWND,
but increases it in response to competition from buffer-filling
congestion control protocols.

When encountering persistent, high loss, BBR can infer
that it is over saturating, and in response BBR can decrease the
CWND cap. However, if the observed throughput is less than
the measured bottleneck bandwidth (BtlBw), BBR can infer it
is underutilizing its share of the bottleneck capacity (or that
there are delayed and/or aggregated ACKs) and increase the
CWND cap. When the measured RTT is greater than the RTT
min, then the router queue must be saturated and the CWND
cap should be decreased.

We demonstrate that BBR’s inflight cap is responsible for
its capacity and shallow buffer loss by manually adjusting
BBR’s inflight cap to 1.5 BDP down from 2 BDP. We then
rerun our experiments with this modified “BBR Shallow”.5

Figure 11 depicts loss rate at the router calculated with a
500 ms sliding window as in Figure 7. BBR Shallow induces
less loss in buffers smaller than 1.5 BDP because it attempts
to queue fewer packets at the bottleneck router, helping with

5https://tinyurl.com/bbrshallow-git



inter-protocol fairness by reducing loss.
When competing with CUBIC, the router queue size that

provides for a fair share is smaller, as shown in Figure 12,
following the format of Figure 10. Instead of having a fair
share when the maximum bottleneck router queue size is
around 5 BDP, the fair share is instead when the maximum
bottleneck router queue size is around 3 BDP. Thus, the
CWND cap helps determine inter-protocol fairness by limiting
throughputs.

2) Improving BBR’s RTprop estimation: The RTprop
should be nearly constant for the same network path, only
changing after a route change. However, when BBR competes
with CUBIC, BBR increases the estimated RTprop when it is
unable to drain the queue, causing BBR to greatly overestimate
the BDP, and thus create high queuing and loss.

BBR could instead always use the historical minimum RTT,
basically never increasing the estimated RTprop. With this
change, BBR would no longer be responsive to route changes
that result in a higher RTprop. Either BBR could ignore route
changes completely (since they are uncommon, and most flows
are short) or BBR could only accept a higher RTprop if it
is consistently higher for many RTprop probes or drastically
higher for a single probe. This could allow BBR to detect a
route change without increasing its CWND erroneously.

V. CONCLUSIONS AND FUTURE WORK

As TCP BBR becomes more widely adopted in streaming
audio and video applications, it is important that BBR provides
consistent behavior alongside existing protocols, such as TCP
CUBIC, and efficient behavior over a range of router queue
sizes. Currently, BBR’s high loss rates in shallow buffers
and throughput variations with CUBIC in deeper buffers can
be inefficient for throughput and disastrous for streaming
audio and video applications that rely on a consistent network
throughput for smooth playback.

Contributions of our work include: a) description and
software for an inexpensive testbed for congestion control
research; b) validation of base BBR performance [5]; c)
validation of BBR performance in shallow buffers, with new
contributions on loss rate versus buffer size; d) validation of
cyclic behavior when BBR and CUBIC compete [9], [10], with
new details on the BBR protocol features, and quantification
of variation and unfairness versus buffer size; e) original
analysis quantifying variation and unfairness of CUBIC and
BBR versus buffer size; and f) contemporary improvement
suggestions to BBR to address the above shortcomings.

Overall, this work answers the questions posed in the
Introduction (Section I):

A) Raspberry Pi 3B+ end-hosts and a Linux PC configured as
a router can be used for congestion control research, having the
benefits of a controlled, network testbed and the latest Linux
kernel code as is used on the Internet.
B) BBR induces packet loss on congested links with a router
buffer sized smaller than 1.5 BDP, with loss increasing linearly
with a decrease in buffer size. Loss rates are 5.5% for a router
buffer size of 1 BDP, doubling to about 11% when the router
buffer size is 0.5 BDP, caused by BBR’s 2 BDP CWND cap.
C) BBR is extremely unfair when competing with CUBIC
in shallow buffers since CUBIC responds to the packet loss
by reducing rates while BBR does not. In deeper buffers,

BBR and CUBIC exhibit large 20-second throughput cycles,
with average throughput fairness achieved only for specific
router queue sizes based on the BDP. These cycles are caused
by BBR’s inaccurate estimate of the minimum RTT, with
the unfairness caused by the tension between the difference
between the BBR and CUBIC operating points.

We suggest potential heuristics to improve BBR that in-
clude a feedback loop to adjust BBR’s CWND and minimum
RTT measurements based on the network conditions. Future
work is needed to implement and test these proposed changes.
Future work could also verify that BBR’s unstable behavior is
present in competition with any buffer-filling congestion con-
trol. Additionally, with wider adoption, BBR evaluation over
network conditions such as 4g, 5g and satellite is important.
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